Картина Мира

Антиэйнштейн: Как появилась теория относительности

Академик А.Ю. Ишлинский[21], говоря о механике ньютоновой, релятивистской и квантовой, отмечал:

— Механика Галилея — Ньютона с более чем достаточной точностью описывает в практически необходимых случаях, за малыми исключениями, движение реальных тел в природе и технике;

— законы механики теории относительности с большой точностью обращаются в законы классической меха ники, если скорости тел невелики по сравнению со скоростью света;

— квантовая природа вещества также может в некоторых случаях допускать в телах такие движения, которые не согласуются с классической механикой.

Сенсационные открытия в физике в конце XIX века вызвали в самых различных кругах общества живейший интерес к собственно научным проблемам, поэтому общенаучные книги Пуанкаре и Оствальда оказывали значительное влияние на общественно-научный климат.

В 1902 году Пуанкаре выпустил книгу «Наука и гипотеза»; тираж 6 тысяч экземпляров, через несколько дней она была распродана. В своем докладе на Международном конгрессе в США в 1904 году Пуанкаре говорил о кризисе в физике, но он говорил и о неизбежности сохранения общих принципов для нового теоретического построения.

В серии статей 1895 года Пуанкаре приходит к важному заключению, что принцип относительности строго выполняется для оптических и электромагнитных явлений. В самом конце века были уже найдены новые преобразования пространственно-временных координат, составляющие основу будущей физической теории. Пуанкаре усмотрел у Лоренца в этих преобразованиях начало новой механики сверхвысоких скоростей и тут же подключился к дальнейшей разработке новой теории.

В 1905 году в сентябрьском номере немецкого журнала «Анналы физики» появилась статья, написанная молодым экспертом швейцарского патентного бюро в Берне Альбертом Эйнштейном. В ней излагалась теория относительности, решавшая проблему электродинамики движущихся тел.

Изложение материала велось молодым автором в довольно необычной для научных публикаций манере: без указания идей и результатов, заимствованных из других исследований, без сопоставления полученных выводов с итогами более ранних попыток решения той же проблемы. Статья не содержала ни одной литературной ссылки, при чтении ее создавалось впечатление о полной оригинальности как постановки, так и решения задачи, о перво- открытии всех изложенных там результатов. «Только путем сопоставления фактически использованных в этой работе положений с ранее опубликованными статьями на данную тему можно установить несомненную связь развиваемых автором идей с высказываниями предшественников, и в первую очередь — с идеями, опубликованными за несколько лет до этого Пуанкаре»[22], [23].

Эйнштейн в 1955 году так ответил на вопрос о независимости его открытия от работ Лоренца и Пуанкаре: «Я был знаком с фундаментальной работой Лоренца, вышедшей в 1895 г., но позднейшей работы и связанного с ней исследования Пуанкаре не знал. В этом смысле моя работа была самостоятельной, новое в ней состояло в следующем. Лоренцевы преобразования выводились здесь не из электродинамики, а из общих соображений…».

Здесь позвольте не поверить нобелевскому лауреату. Во-первых, любой ученый, занимающийся какой-то проблемой, обязательно изучает всю литературу по этому вопросу. Во-вторых, любой человек, просто интересующийся физикой, был в курсе положения дел в ней в тот период. В-третьих, работая в патентном бюро, Эйнштейн вполне мог быть в курсе теоретических разработок в физике. В-четвертых, когда говорится, что соотношение получено «из общих соображений» или «методом подбора», то это наводит на мысль, что оно просто списано у человека, который, зная математику, это соотношение вывел. Интересная деталь: не сохранилось никаких черновиков первых работ Эйнштейна. «Еще более интересная деталь: рецензию на первую статью Эйнштейна писал Пуанкаре. Рецензия Пуанкаре — это единственный материал в истории журнала «Анналы физики», который не сохранился в архивах журнала. Кому-то очень нужно было скрыть, что же писал в рецензии Пуанкаре и как он исправил присланный ему экземпляр статьи » (академик РАН В.Ф.Журавлев).

И еще одна интересная деталь: в 1904 году известный математик Фердинанд Линдеманн писал : «Я произвел вывод электрических явлений, которые представляют собой важнейшие результаты электродинамики и магнетизма, из оптических; я надеюсь в скором времени опубликовать результаты этих исследований». Однако последующие его публикации не содержали таких результатов, вместо этого в 1905 году у редактора *Der Physic» оказалась статья на эту тему никому не известного патентоведа Альберта Эйнштейна. Рено де ля Тай[24] в статье «Релятивизм Пуанкаре предшествовал эйнштейновскому» написал: «… 26 сентября 1905 года «Annalen der Physic» (Берлин—Лейпциг) публикуют статью Альберта Эйнштейна, озаглавленную «К электродинамике движущихся тел». Рукопись, подписанная Эйнштейном и его женой Милевой Марич, была получена редакцией 30 июня 1905 года, то есть более трех недель спустя после заметки Пуанкаре. Эта рукопись была немедленно уничтожена после ее публикации…[25] В его статье можно найти то, о чем в течение десяти лет Пуанкаре дискутировал с Лоренцем и что уже неоднократно публиковалось: ненужность эфира, абсолютного пространства и абсолютного времени, условность понятия одновременности, принцип относительности, постоянство скорости света, синхронизация часов световыми сигналами, преобразования Лоренца, инвариантность уравнений Максвелла и так далее.К уже известному Эйнштейн добавил формулы релятивистского эффекта Доплера и аберрации, которые немедленно вытекают из преобразований Лоренца.

Таким образом, независимый исследователь, никогда ничего не публиковавший по обсуждаемо — му вопросу прежде, якобы переоткрыл практически мгновенно то, что ученые класса Лоренца и Пуанкаре смогли установить только после десяти лет усилий. Более того, вопреки научной этике в своей статье Эйнштейн не делает никаких ссылок на работы предшественников, что особенно поразило Макса Борна. При этом Эйнштейн, который читал по-французски так же хорошо, как и по-немецки, знал работу Пуанкаре * Наука и гипотеза», а также, без сомнения, и все другие статьи Лоренца и Пуанкаре». И опять мнение биографов[2]: «Статьи Эйнштейна, написанные в 1905 году, отнюдь не вызвали бурной реакции в научном мире, напротив, их практически не заметили».

В статье 1906 года Эйнштейн пишет: «Мы показали, что изменение энергии должно соответствовать эквивалентному изменению массы на величину, равную изменению энергии, деленному на квадрат скорости света… Несмотря на то что простое формальное рассмотрение, которое должно быть приведено для доказательства этого утверждения, в основном содержится в работе Пуанкаре (1900 г.), мы из соображений наглядности не будем основываться на этой работе». Вопросы есть?

«Что же касается самого Эйнштейна, — пишет М.Ковров, — ограничимся следующим. В конце 1949 г. опубликован анализ Геделя, показавшего, что решения уравнений общей теории относительности приводят к абсурду. Абсурд заключается в возможности человека совершить путешествие в свое прошлое и внести в свое поведение такие изменения, которые несовместимы с его памятью о прошлом…» Описание процессов, протекающих с большими скоростями, можно построить, не прибегая к уравнениям теории относительности. Анализ теории относительности, выполненный главой московской математической школы Н.Н. Лузиным, дал ему основание утверждать, что идеи Эйнштейна относятся скорее к «министерству пропаганды», чем к добросовестной мысли ученого, и что имя Эйнштейна останется забавным казусом в истории науки…». И, наконец, возникает вопрос: если Лоренцевы преобразования были получены из общих соображений, то они и должны оставаться преобразованиями Лоренца, не так ли? Поэтому следует остановиться на том, что же все-таки сделали Лоренц и Пуанкаре, предварительно оценив основные допущения, принятые Эйнштейном.

Исходящие от человека знания содержались в сентябрьской (1905 года) статье Эйнштейна и в части постановки задачи о теории, удовлетворяющей принципу относительности, совпадали с работами Лоренца и Пуанкаре. «Разница состояла лишь в том, что Лоренц указывает источник такой постановки — одно из ранних выступлений Пуанкаре по этому вопросу, а Эйнштейн дает обоснование принципа относительности без всякой ссылки на первоисточник».

Геометрическая иллюстрация (по замечанию академика РАН В.Ф. Журавлева) теории относительности была дана в работах немецкого математика Минковского (1907 год, доклад «Принцип относительности»), но он ни в одной своей статье не отметил выдающихся результатов Пуанкаре в развитии математического аппарата теории относительности и не упомянул предложенную им идею четырехмерного представления этой теории. В то же время в ряде вопросов Пуанкаре здесь опередил и Минковского.

Пуанкаре («К динамике электрона») первым вводит мнимую координату времени и толкует преобразование Лоренца как поворот в пространстве четырех измерений. Здесь он также дает свою знаменитую теорему о сложении скоростей. Минковский в своей статье «Пространство и время» дважды ссылается на Пуанкаре, один раз как на автора, давшего определенной группе преобразований знаменитое название «преобразований Лоренца», а затем упоминая о даваемом Пуанкаре согласовании теории тяготения с постулатом относительности. Но Минковский писал: «То обстоятельство, что постулат относительности является не искусственной гипотезой, но новым пониманием времени, к которому нас вынуждают явления природы, до настоящего времени в наиболее резкой форме показано Эйнштейном».

Это что, оценка популяризаторской роли Эйнштейна?

Чисто четырехмерный мир называли миром Минковского (но никак не Эйнштейна), хотя справедливо было бы говорить о мире Пуанкаре — Минковского. Несколько слов о Минковском: Герман Минковский родился в 1864 году в местечке Алексоты Минской губернии и еще в детстве переехал в Германию, где закончил среднюю школу и университет. Выше уже упоминалось, что он преподавал математику в политехникуме, где с этим предметом не желал знакомиться Эйнштейн. Затем Минковский занимал кафедру в Геттингенском университете, был в большой дружбе с Гильбертом, чем, видимо, и объясняется тот факт, что Гильберт «уступил» Эйнштейну полученные им соотношения. Минковский умер в возрасте 44 лет. Зоммерфельд в примечании к статье Минковского «Пространство и время» отмечает: «Релятивистская форма ньютоновского закона, данная Минковским, оказывается для частного, отмеченного в тексте случая исчезающего ускорения, частным случаем более общей формы, предложенной Пуанкаре…» Статья Пуанкаре почти на 3 года опередила работу Минковского. Но эта статья фактически осталась незамеченной, тогда как статьи Эйнштейна и Минковского привлекли к себе внимание, первая в 1905—1906 годах, вторая в 1908—1909 годах.

Причина этого любопытного обстоятельства, не имеющего аналогов в современной физике, не может заключаться только в малой известности и распространенности среди физиков знаменитого математического журнала, где была напечатана статья Пуанкаре. Для большинства физиков был непривычен строгий математический язык Пуанкаре; эта работа на первых порах могла показаться рядом до некоторой степени чисто формальных, математических преобразований. Статья Эйнштейна сразу указывала на вытекающую из вновь открытых закономерностей (Лоренцем и Пуанкаре) необходимость пересмотреть наши основные физические представления о пространстве и времени.

Стиль работы Пуанкаре был строго теоретический, а Эйнштейн начал строить свою статью с рассмотрения мыслимых экспериментов об измерении пространства и времени. То есть, не ссылаясь на работы Лоренца и Пуанкаре, не упоминая опубликованные в течение десяти лет результаты, предшествующие своей статье, молодой патентовед выступил как ловкий популяризатор чужих идей, что не давало ему морального права считать и рекламировать себя как создателя теории относительности.

«Пуанкаре не мог не знать о попытках немецких авторов представить развитие Эйнштейном и Минковским пространственно-временного аспекта теории Лоренца как создание новой физической теории. Но, видимо, такие притязания немецкой науки представлялись ему настолько необоснованными, что он не считал нужным делать специальные заявления по этому поводу». Поведение Лоренца выглядело «весьма странным потворствованием развернувшейся тогда кампании, тенденциозно приписывающей одному Эйнштейну результаты коллективного труда нескольких выдающихся ученых… »[23].

Может быть, это было связано с тем, что Лоренц разрешил использовать свое имя для организации частного фонда со сбором пожертвований? «Это мероприятие, не имеющее прецедента, говорит о появлении в околонаучной среде весьма деловых людей, организаторским действиям которых не сумел противостоять великий ученый». И еще одна интересная деталь — в 1912 году Лоренц оставил специально созданную для него кафедру теоретической физики, передав ее Паулю Эренфесту (самому близкому Эйнштейну европейскому физику, общение с которым у него продолжалось двадцать лет).

Следует отметить, что во время пребывания во Франции в 1922 году Эйнштейн не смог выступить во Французской академии наук. «Здесь для многих имя Эйнштейна было одиозным — он был сторонником свободы, мира, социального прогресса». Видимо, во Французской академии наук собрались одни националисты и антисемиты и, вообще, будущие фашисты. Скорее можно предположить, что французским академикам хорошо была известна роль Лоренца и Пуанкаре в создании теории относительности и роль Эйнштейна и связанных с ним «сторонников свободы» в монополизации этой теории. Вспомним, что в своем выступлении 1911 года в Лондонском университете Пуанкаре по-прежнему связывал происшедший переворот в физике только с именем Лоренца, совсем не упоминая Эйнштейна.

В 1915 году Эйнштейн опубликовал общую теорию относительности. В специальной теории относительности (1905 г.) по-новому трактуются такие понятия, как пространство, время, масса; не существует абсолютных пространства, времени и массы; они относительны, то есть могут изменяться в зависимости от системы отсчета. Общая теория относительности по существу является теорией тяготения. В 1826 году Н.И. Лобачевский доказал, что может существовать иная, неевклидова геометрия, отказывающаяся от постулата параллельных линий. В геометрии Н.И. Лобачевского через точку, взятую вне прямой, можно провести бесчисленное множество прямых, не пересекающихся с данной. Фактически общая теория относительности — это попытка- дать физическое объяснение четырехмерной геометрии. В работе [3]: «Идея физической реальности некоторой новой, нетрадиционной, может быть парадоксальной, может быть неевклидовой, геометрии появилась у Лобачевского, Гаусса и Римана. Но она не стала физической теорией…».

Специальная теория относительности базируется на следующих основных положениях:

1) отсутствие в природе эфира;

2) принцип относительности;

3) принцип постоянства скорости света;

4) неизменность интервала, состоящего из трех про странственных координат и произведения времени на ско рость света;

5) принцип «одновременности», определяющий одно временность происходящего события, по моменту прихо да к наблюдателю светового сигнала.

Первое положение — представление об эфире как о неподвижной среде, которая могла, следовательно, быть избранной в качестве системы отсчета, позволяла таким образом выделить абсолютное движение. Исходя из признания существования эфира, Лоренцем были получены его преобразования, использованные Эйнштейном в специальной теории относительности с отказом от признания факта существования эфира. Преобразования Лоренца были удобны как формальный прием, позволяющий решить проблемы электродинамики, возникшие в конце XIX века.

Второе — по существу есть обобщение механического принципа относительности Галилея (1632 г.) на все явления природы. Галилей, рассматривая механические явления, происходящие в закрытой каюте корабля, пришел к выводу, что никакими опытами внутри каюты невозможно обнаружить факт покоя или равномерного и прямолинейного движения корабля. Эйнштейн распространил этот вывод на немеханические явления. Таким образом, принцип относительности утверждает, что все законы природы (а не только законы механики) одинаковы во всех инерциальных системах координат (инерциальная система — та, в которой выполняются законы Ньютона), то есть системах, движущихся прямолинейно и равномерно относительно друг друга; все инерциальные системы равноправны.

Третье положение — скорость света в вакууме одинакова во всех инерциальных системах координат. Это допущение понималось Эйнштейном как постоянство скорости света. Опять же после того, как было введено Пуанкаре. Отметим, что в механике скорость — одна из основных характеристик движения материальной точки, а скорость распространения света в вакууме — одна из основных физических констант: с = 299 792 458 м/с.

Эйнштейн пришел к выводу, что факт движения системы с некоторой скоростью влияет на ее размеры, скорость течения времени и массу, и заявил, что получил связь между энергией и массой тела. В действительности же эта связь была получена Пуанкаре (подробнее об этом говорится ниже). Отсюда возник так называемый парадокс «близнецов»: космонавт, который пролетел на корабле год (по часам корабля) со скоростью, близкой к скорости света, возвратившись на Землю, встретит брата-близнеца, постаревшего почти на сорок лет.

Третье допущение есть обобщение результатов опыта Майкельсона (1881 год), из которого следует, что скорость света одинакова в разных направлениях и не зависит от факта движения Земли. В основе четвертого и пятого допущения лежит привязка к скорости света. Общая теория относительности, распространяя специальную теорию относительности на ускоренные движения, для чего нужно было показать, что за счет тяготения могут быть отнесены не только динамические эффекты движения, но и оптические явления, делала вывод о наличии у света гравитационной массы.

Эйнштейн отождествлял тяготение с искривлением пространства — времени. Идея гравитационной массы света и соответственного искривления светового луча под действием тяжелого тела в его гравитационном поле давала новую гипотезу о Вселенной.

В основу общей теории относительности Эйнштейн положил следующие допущения:

1) гравитационное поле моделируется искривленным пространством бесконечно малого объема, и соответствующее ускорение системы отсчета проявляется в том, что локально гравитационное поле может быть устранено преобразованием координат;

2) уравнения гравитационного и материальных полей инвариантны (независимы) отностельно произвольных координат;

3) потенциалы гравитационного поля, представляющие собой геометрические характеристики пространства — времени, удовлетворяют уравнениям Эйнштейна, ко торые на самом деле должны называться уравнениями Гильберта (были выведены Гильбертом в 1915 году).

Здесь следует отметить, что Эйнштейн в первом сообщении об уравнениях гравитационного поля сказал, что приведенные соотношения получены им «из общих соображений», не упомянув об авторстве Гильберта. Гильберт по своей наивности незадолго до этого сообщил результаты математических выкладок Эйнштейну после настойчивых просьб последнего. Когда же он понял, с кем имеет дело, было уже поздно — уравнения Гильберта, вывод которых представляет серьезное математическое достижение, стали именоваться уравнениями Эйнштейна;

4) скорость распространения гравитационных волн (гравитации) равна скорости света. Но если свет обладает гравитационной массой, то есть подвержен действию поля тяготения, то под действием этих сил он должен испытывать ускорение. Чтобы допустить такое ускорение, нужно отказаться от основного постулата специальной теории относительности — постоянства скорости света;

5) пространство немыслимо без эфира.

Эйнштейн писал (1924 год): *…Мы не можем в теоретической физике обойтись без эфира, т.е. континуума, наделенного физическими свойствами…» Таким образом, последнее допущение является опровержением ранее сделанного Эйнштейном допущения (в специальной теории относительности) об отсутствии эфира. Как говорят в таких случаях в Одессе: «Интересное кино!», когда надо по одной «теории» — эфир не существует, а по другой — без него никак нельзя обойтись!

Необходимо отметить, что расхождение между классической физикой и теорией относительности, касающееся числа и содержания основных постулатов, является весьма принципиальным. Двойственной была оценка теории относительности при жизни Эйнштейна[3]. С одной стороны, «…началась прямая травля теории относительности, главным образом в Германии», а с другой — «…вслед за Махом Адлер выступил против теории относительности и в тюрьме написал работу, которая, по его мнению, неопровержимо доказывала ложность взглядов Эйнштейна. Суд назначил экспертизу, которая должна была определить, не свидетельствует ли эта работа об умственном расстройстве подсудимого». И дальше — «…нападки на Эйнштейна и на теорию относительности стали частью большого заговора против демократии, мира и прогресса». Это похоже на старую присказку: «Запомни, изменяя мне, ты изменяешь всей стране!»

Тем более что по вопросу «травли» теории относительности в Германии есть и другое мнение: в то время Эйнштейн и Минковский усиленно превозносились немецкой школой физиков в качестве единственных создателей теории относительности. По поводу же незыблемости физических принципов теории относительности в варианте Эйнштейна можно привести слова Д.Д. Томсона: «Очарование физики в том и состоит, что в ней нет жестких и твердых границ, что каждое открытие не является пределом, а только аллеей, ведущей в страну, еще не исследованную, и сколько бы ни существовала наука, всегда будет изобилие нерешенных проблем…»

В этом же духе высказывался и Луи де Бройль: «История наук показывает, что прогресс науки постоянно тормозится тираническим влиянием определенных концепций, которые стали в конце концов рассматриваться как догмы. По этой причине необходимо периодически подвергать весьма глубокому исследованию принципы, которые в конечном счете стали применяться без обсуждения».

Сам же Эйнштейн считал: «Тому, кто творит, плоды собственной фантазии кажутся настолько необходимыми и естественными, что он сам их считает не образами мышления, но заданными реальностями и хочет, чтобы все так считали».

Из книги В.И. Бояринцева „Антиэйнштейн. Главный миф ХХ века”.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *